Skip Navigation

Algorithms, Modeling Methods, Verification & Validation

A required course in the Predictive Analytics Certificate Program.

Course Description

Learn how to use the basics of predictive analytics and modeling data to determine which algorithms to use. Understand the similarities and differences and which options affect the models most. Discover how to verify and validate your model. Topics covered include predictive analytics algorithms for supervised learning, including decision trees, linear and logistic regression, neural networks, k-nearest neighbor, support vector machines, and model ensembles. Gain a deeper understanding of how algorithms work qualitatively by reviewing best practices and the influence of various options on predictive models. Required prerequisites: I&C SCI X425.61 Introduction to Predictive Analytics and I&C SCI X425.63 Effective Data Preparation

Prerequisites: I&C SCI X425.61 Introduction to Predictive Analytics and I&C SCI X425.63 Effective Data Preparation.

  • Details
  • $765
  • January 21, 2019 to March 10, 2019
  • Location: Online
  • Reg#: 00336
  • ID/Units: I&C SCI X425.64  (2.00)
    ( Section 1 )
  • Quarter: Winter 2019

Instructor


William J. Henry, M.S., is a scientific programmer at the Navy Research Laboratory in Monterey where he regularly develops data based applications in Python. Previously, at EarthRisk Technologies, he led the development of a neural network ensemble temperature forecast model.

Textbook Information

Textbooks for your course may be purchased from any vendor or bookseller of your choice.

No textbooks are required for this course.

Meeting Schedule

EventDateDayStart TimeEnd TimeLocationRoom
START01/21/2019Monday------Online (Access Begins)---
END03/10/2019Sunday------Online (Access Ends)---